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THE COINCIDENCE OF MASS INTEGRALS g(α)
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Abstract

The idea of the generation of thermokinetic models on the basis of the analysis of kinetic equations
(isothermal conditions) and thermokinetic equations (dynamic conditions) is presented. The method
resembles that used in polisothermal conditions, which consists in analysis of the relation of the
equilibrium conversion degree vs. temperature. The interpretation of the coincidence of mass
integrals g(α) in the relation α vs. temperature has been attempted.
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Introduction

It is well known that the results of experimental investigations of the kinetics of
chemical reactions can be described by using many mathematical forms, called mass
integrals g(α ). The literature relating to this problem includes many records, covering
not only dynamic conditions [1–11], but also isothermal ones [1, 5, 6, 8, 10, 12–14],
and especially experiments performed polyisothermally by using the experimental
matrix of the [time * temperature] type [13, 14]. Generally, the estimated constants of
the Arrhenius equation form an isokinetic effect [9] in a linear forms: lnA vs. E. This
fact, together with the analysis [15] with the correction coefficient, changes our opin-
ion on the spread observed in the estimated activation energy values.

The aim of the current work is to present the idea of relating a certain set of ex-
perimental data with many forms of the mass integrals g(α ).

Kinetic and thermokinetic equations

The most simple kinetic model for isothermal processes, in which the Arrhenius con-
stants do not depend upon temperature, will be assumed for the needs of our analysis:

g g A( – ( )α) α τi o
E/RTe= − , T=idem (1)

where α i is the initial conversion degree.
Let us assume for simplification that g( )α i =0. The time variable in Eq. (1) can

include an exponent, a correction parameter, taking values p=2, 3 or even 4 [16] and
in a special case p=1/2. This parameter can also assume other values [14].
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In general, Eq. (1) should take a form:

[ ( )] /
g Aα τ1 p E/RTe= − , T=idem, 0<p<4 (2)

If p≠1, the Arrhenius constants would take other values than these constants for
other kinetic models given by (1), i.e. Eo→E, Ao→A.

For processes occurring under dynamic conditions at a heating rate q=dT/dτ, we
obtain the thermokinetic equation

g
A

q
I T( ) ( )α = , where I T( )= −∫e dE/RT

o

T

T (3)

Most often, the non-elementary temperature integral I(T) is approximated by

I T
RT

E
( ) –=

2

e E/RT (4)

or

I T T( ei
E/RTT ) ( – )= − (5)

where Ti refers to the maximal temperature for which α =0.
It is often assumed that Ti=0 K [10, 17, 18]. Combining Eqs (3) and (5) and as-

suming Ti=298 K results in

g A
T

q
( )

––α = e E/RT 298
(6)

which corresponds directly to Eq. (1) for p=1, because

T

q

–298=τ (7)

Thus, it is proven that the thermokinetic equation can be treated as a special case
of Eq. (1), which means that it is identical to that describing isothermal processes, or
more precisely polyisothermal ones.

The coincidence of mass integrals g(α)

To make the analysis simpler, we assume that the reversible reaction takes place un-
der isothermal conditions (T=idem). The reaction proceeds at low-temperature,
which results in a low reaction rate.

This example is shown in Fig. 1. After a very long time, the conversion degree
will assume a value near the equilibrium &α at this temperature. Curve A is given by
the equation in which the reaction force ( & – )α α is given relative to &α :

d

d

nα
τ

α
α

= 

 


k 1–

&
, T=idem, n>0 (8)
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The ratio α α/ & /=K K a forms an analogy to the thermodynamic threshold de-
scribed by B³a¿ejowski [11, 17–19].

In special case for n=1, Eq. (8) could describe irreversible reaction of type X↔Y,
when initial concentration of compound Y is equal 0.

However, before the conversion degree reaches equilibrium, the temperature is in-
creased to shift the process into curve B. In fact, the process is realized by manifold shifts
to the consecutive curves, at last reaching curve B, which is described by a similar equa-
tion:

d

d
p

nα
τ

α= −k ( )1 , Tp=idem, &α =1 (9)

Curve B, however, relates to an irreversible reaction. Kinetic constants k and kp

can be given by a classical Arrhenius law ( )k A E RT= exp [– /( )] , while the increase in
the equilibrium conversion degree with the temperature T→Tp (curve C in Fig. 1) can
be defined by the following equation [15]:
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Fig. 1 The idea of the generation of a function α vs. T on the basis of kinetic analysis α
vs. time starting from isothermal conditions

Fig. 2 The relationship between the conversion degree and temperature for 1 – &α ;
2 – α and the F1 model; 3 – α and the F2 model
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, T=Tp, &α =1 (10)

The term (–lnT/Tp) can be omitted in Eq. (10).
The generation of the function α vs. T consists in the integration of Eq. (8).

Therefore, we obtain

for n=1: – & ln –
&

α α
α
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(11)

for n≠1:
&

–
– –

&

–α α
α

τ
1

1 1
1

n
k



 















=

n

where

k A
T

q
τ= e E/RT– –298

(12)
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Table 1 A list of the best fitted thermokinetic models significance level=0.0(5), N=number of
observables

Mechanism
assumed and
activation
energy

Symbol of
mechanism

E/kJ mol–1
Correction

factor
acc. to [15]

Corrected
value of

E/kJ mol–1
r2/% F test

F1
E=220 kJ mol–1

A2 99.0 1/2 198.0 100.0 508729

F1 215.6 1 215.6 99.99 395603

A3 60.1 1/3 180.3 99.99 253153

2F1-R1 227.2 1 227.2 99.84 13017

D3 427.3 2 213.7 99.67 6435

(N=23)

lnα vs. 1/T 227.5 1 227.5 100.0 701673

(N=16)

F2
E=220 kJ mol–1

F2/2 99.4 1/2 198.8 99.98 117583

F2 216.4 1 216.4 99.98 97676

2F1-R1 228.2 1 228.2 99.88 18009

F1 199.1 1 199.1 99.45 3832

A2 90.7 1/2 181.4 99.27 2851

(N=23)

lnα vs. 1/T 224.1 1 224.1 99.99 227279

(N=16)



The interchangeability of the time and temperature variables (7) enables one to
bring Eq. (6) into a form convenient for further calculations.

The structure of Eqs (11) and (12) results in the coincidence of the mass integ-
rals g(α ).

Conclusions

The process of thermal dissociation of CaCO3 was analyzed, with assumption of the data
given in [13] and [15]: A=34.7 106 min–1, E=220 kJ mol–1, ∆H d =176 kJ mol–1,
Tp=1157.4 K, ν=1 and q=10 K min–1. Equations (11), (12) and (10) (for n=1 and n=2)
were used to form the model illustrated in Fig. 2. The generated curves of α vs. T were
correlated by using the generally known methods (Eqs (3) and (4)) to obtain a series of
significant relation in the function scales of ln[g(α )/T 2] vs. 1/T. Table 1 gives each five
best fitted thermokinetic models. The relationships obtained are closely related to the as-
sumed order of the reaction F1 and F2. The best A2 model comes from the F1 model
(p=2). In the second case, the assumed formula for n=2 was corrected by F2/2, i.e. g(α )=
[α /(1–α )]1/2 (also p=2). Initially, for low conversion degree all the models are linearly
convergent in relation to α (Fig. 2). Further if T≥Tp, there are several possible routes to
reach α =1; therefore, there is a small spread among the experimental data describing the
final phase of dissociation that gives a possibility for many approximations with different
mass integrals g(α ). The symbols are labeled according to [15].
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